4th POSTGRADUATE CLL Conference

Bologna November 13-14 2023

Royal Hotel Carlton

President: Pier Luigi Zinzani

Is there already a role for CAR-T cell therapy in CLL?

Tanya Siddiqi, MD City of Hope Orange County, CA

Disclosures of Tanya Siddiqi, MD

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
AstraZeneca					x	Х	
BMS	x				x	х	
Beigene					x	х	
Abbvie						х	
Gilead						х	

High unmet need in R/R CLL/SLL after BTKi and venetoclax

- Outcomes remain poor for patients with R/R CLL/SLL who have relapsed after prior BTKi and venetoclax failure, with low CR/CRi rates of 0%—5% and short median OS¹⁻⁶
- Real-world evidence indicates progressively worse outcomes as treatment options become exhausted⁷
 - Median time from dual discontinuation of BTKi and venetoclax to subsequent treatment failure or death was 5.6 months
- Effective therapies are needed for patients with CLL who have failed novel targeted therapies

1. Patel K, et al. J Hematol Oncol 2021;14:69; 2. Sedlarikova L, et al. Front Oncol 2020;10:894; 3. Lew TE, et al. Blood Adv 2021;5:4054–4058; 4. Jones J, et al. Blood 2016;128:637; 5. Mato AR, et al. Clin Cancer Res 2020;26:3589–3596; 6. VENCLEXTA® (venetoclax) [package insert]. North Chicago, IL: AbbVie Inc.; June 2022; 7. Mato AR, et al. Clin Lymphoma Myeloma Leuk 2023;23:57–67.

Long-Term Remission of CLL with CAR T cells

- 2 advanced, chemotherapy-resistant CLL patients with the longest (10+ years) follow-up on any trial of CART19 cells
- Both patients had received five therapies before being treated at the University of Pennsylvania with autologous CART19 cells (tisagenlecleucel) cells in 2010
- Both patients have persistence of CAR-engineered T cells and both patients are still in remission as determined by flow cytometry and deep sequencing of IgH rearrangements for over 10 years

CAR-T cells after failure of ibrutinib: JCAR014

Fig 4. (A) Progression-free survival and (B) overall survival in patients who cleared disease from bone marrow 4 weeks after CAR-T cell infusion by flow cytometry and had no detectable malignant IGH copies (IGHseq-negative) compared with those who had detectable malignant IGH copies (IGHseq-positive). mOS, median OS; mPFS, median PFS; NR, not reached.

JCAR014 plus ibrutinib led to lower CRS severity and lower serum concentrations of CRSassociated cytokines despite equivalent in vivo CAR-T cell expansion

> Turtle C, et al. JCO 2017; 35: 3010-20 Gauthier J, et al. Blood 2020; 135 (19): 1650–1660

4th POSTGRADUATE

CLL Conference

Lisocabtagene maraleucel in relapsed or refractory chronic lymphocytic leukemia/small lymphocytic lymphoma: primary analysis of the phase 1/2, single-arm, multicenter TRANSCEND CLL 004 study

Tanya Siddiqi,¹ David G. Maloney,² Saad S. Kenderian,³ Danielle M. Brander,⁴ Kathleen Dorritie,⁵ Jacob Soumerai,⁶ Peter A. Riedell,⁷ Nirav N. Shah,⁸ Rajneesh Nath,⁹ Bita Fakhri,¹⁰ Deborah M. Stephens,¹¹ Shuo Ma,¹² Tatyana Feldman,¹³ Scott R. Solomon,¹⁴ Stephen J. Schuster,¹⁵ Serena K. Perna,¹⁶ Sherilyn A. Tuazon,¹⁷ San-San Ou,¹⁷ Eniko Papp,¹⁷ Yizhe Chen,¹⁶ William G. Wierda¹⁸

¹City of Hope National Medical Center, Duarte, CA, USA; ²Fred Hutchinson Cancer Research Center, Seattle, WA, USA; ³Mayo Clinic, Rochester, MN, USA; ⁴Duke University Health System, Durham, NC, USA; ⁵UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA; ⁶Center for Lymphoma, Massachusetts General Hospital Cancer Center, Boston, MA, USA; ⁷David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL, USA; ⁸Medical College of Wisconsin, Milwaukee, WI, USA; ⁹Banner MD Anderson Cancer Center, Gilbert, AZ, USA; ¹⁰University of California San Francisco, San Francisco, CA, USA; ¹¹Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA; ¹²Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA; ¹³John Theurer Cancer Center at Hackensack Meridian Health, HMH School of Medicine, Hackensack, NJ, USA; ¹⁴Northside Hospital Cancer Institute, Atlanta, GA, USA; ¹⁵University of Pennsylvania Abramson Cancer Center, Philadelphia, PA, USA; ¹⁶Bristol Myers Squibb, Princeton, NJ, USA; ¹⁷Bristol Myers Squibb, Seattle, WA, USA; ¹⁸The University of Texas MD Anderson Cancer Center, Houston, TX, USA

TRANSCEND CLL 004 study design: phase 1/2, open-label, multicenter study

ClinicalTrials.gov: NCT03331198

Key patient eligibility criteria

- Age \geq 18 years
- · R/R CLL/SLL with an indication for treatment
- · Previously failed or ineligible for BTKi therapy
- Failure of ≥ 2 (high risk) or ≥ 3 (standard risk) lines of prior therapy
- ECOG PS ≤ 1
- Adequate bone marrow, organ, and cardiac function
- No Richter transformation nor active CNS involvement by malignancy

Primary endpoint (PEAS at DL2)

CR/CRi rate per iwCLL 2018 by IRC assessment

Key secondary endpoints (PEAS at DL2)

ORR, uMRD rate in blood

Other secondary endpoints

- DOR, DOCR, PFS, TTR, TTCR per IRC assessment, OS, uMRD CR rate in blood, and safety
- Primary and key secondary endpoints were tested in a prespecified subset of patients with BTKi progression and venetoclax failure (PEAS) at DL2 by the following hierarchy: CR/CRi rate (H₀ ≤ 5%), ORR (H₀ ≤ 40%), and uMRD rate in blood (H₀ ≤ 5%)

^aDuration of follow-up was increased to 48 months in protocol amendment 5 (February 16, 2021). Patients still in ongoing response per iwCLL 2018 criteria after the 2-year follow-up were followed for safety, disease status, additional anticancer therapies, and survival for an additional 2 years or until progression.

CONSORT diagram

^aVenetoclax failure was defined as discontinuation of venetoclax due to disease progression or intolerability and met indications for further therapy per iwCLL 2018, or no objective response within 3 months of initiating venetoclax; ^bNonconforming product was defined as any product wherein one of the CD8 or CD4 cell components did not meet one of the requirements to be considered liso-cel but was considered appropriate for infusion. ITT, intention to treat.

Siddiqi T, et al. ASCO annual mtg 2023

Demographics and baseline characteristics

Characteristic	Full study population (n = 117)	BTKi progression/venetoclax failure subset (n = 70)
Median (range) age, y	65.0 (49-82)	66.0 (49-78)
Median (range) prior lines of systemic therapy	5 (2—12)	5 (2—12)
Bulky lymph nodes,ª n (%)		
Yes	52 (44)	32 (46)
Unknown	9 (8)	8 (11)
High-risk cytogenetics, n (%)	97 (83)	60 (86)
Prior BTKi, n (%)	117 (100)	70 (100)
BTKi refractory ^b	103 (88)	70 (100)
BTKi relapsed ^c	2 (2)	0
BTKi intolerant only	12 (10)	0
Prior venetoclax, n (%)	94 (80)	70 (100)
Venetoclax refractory ^b	89 (76)	67 (96)
Venetoclax relapsed ^c	0	0
Venetoclax intolerant only	4 (3)	3 (4)
Prior BTKi and venetoclax, n (%)	94 (80)	70 (100)
BTKi progression/venetoclax failure, ^d n (%)	70 (60)	70 (100)
Received bridging therapy, n (%)	89 (76)	55 (79)

^aDefined as \geq 1 lesion with the longest diameter of \geq 5 cm; ^bDefined as no response or progression \leq 6 months from last dose of therapy; ^cDefined as disease progression in a patient who previously had CR/CRi or PR/nPR for \geq 6 months; ^dIncluding patients who progressed on a BTKi and met one of the following: (1) discontinued venetoclax due to disease progression or intolerability and patient's disease met indications for further therapy per iwCLL 2018, or (2) failed to achieve an objective response \leq 3 months of initiating therapy. nPR, nodular partial response/remission.

Efficacy outcomes

Efficacy	Full efficacy analysis population at DL2 (n = 87)	BTKi progression/venetoclax failure subset at DL2 (n = 49)	
Primary endpoint: IRC-assessed CR/CRi rate (95% CI)	18 (11 - 28)	$18 (9 - 32) \cdot B = 0.0006^{a}$	
per iwCLL 2018, %	18 (11-28)	10 (9-32), 7 = 0.0000	
Key secondary endpoints			
IRC-assessed ORR (95% CI), %	47 (36—58)	43 (29—58); <i>P</i> = 0.3931ª	
uMRD rate in blood (95% CI), %	64 (53-74)	63 (48—77) ^b	
Exploratory endpoint: uMRD rate in marrow (95% CI), %	59 (48-69)	59 (44—73)	
Other secondary endpoints			
Best overall response, n (%)			
CR/CRi	16 (18)	9 (18)	
PR/nPR	25 (29)	12 (24)	
SD	34 (39)	21 (43)	
PD	6 (7)	4 (8)	
Not evaluable	6 (7)	3 (6)	
Median (range) time to first response, months	1.5 (0.8-17.4)	1.2 (0.8–17.4)	
Median (range) time to first CR/CRi, months	4.4 (1.1-17.9)	3.0 (1.1-6.1)	

All MRD-evaluable responders were uMRD in blood and marrow and 12 of 20 MRD-evaluable patients with SD were uMRD in blood; a majority of patients achieved uMRD by Day 30

^aOne-sided *P* value from binomial exact test (H_0 of CR/CRi \leq 5%; H_0 of ORR \leq 40%); ^b*P* value not presented for uMRD rate in blood ($H_0 \leq$ 5%) because the ORR hypothesis was not rejected at 1-sided 2.5% significance level. MRD, minimal residual disease; SD, stable disease.

Duration of response by best overall response

Data on Kaplan-Meier curves are expressed as median (95% CI, if available). NR, not reached.

Progression-free survival by best overall response

Data on Kaplan-Meier curves are expressed as median (95% CI, if available).

Overall survival by best overall response

Data on Kaplan-Meier curves are expressed as median (95% Cl, if available).

PFS by BOR and MRD status in blood by next-generation sequencing at 10⁻⁴ sensitivity

 In exploratory analyses of PFS by uMRD in blood, median PFS of was around 26—27 months in patients with uMRD and < 3 months in those with detectable MRD in both population sets.

Safety: TEAEs, AESIs, and management of CRS and NEs

• The most common grade \geq 3 TEAEs (\geq 40%) were neutropenia (61%), anemia (52%), and thrombocytopenia (41%)

Patients with CRS and NEs	Full study population (n = 117)
CRS,ª n (%)	99 (85)
Grade 1/2	43 (37)/46 (39)
Grade 3	10 (9)
Grade 4/5	0
Median (range) time to onset/resolution, days	4.0 (1-18)/6.0 (2-37)
NE, ^b n (%)	53 (45)
Grade 1/2	13 (11)/18 (15)
Grade 3	21 (18)
Grade 4	1 (1)
Grade 5	0
Median (range) time to onset/resolution, days	7.0 (1-21)/7.0 (1-83)

 81 (69%) patients received tocilizumab and/or corticosteroids for management of CRS and/or NEs

Other AESIs, n (%)	Full study population (n = 117)
Prolonged cytopenia ^c	63 (54)
Grade ≥ 3 infections ^d	20 (17)
Hypogammaglobulinemia ^e	18 (15)
Tumor lysis syndrome	13 (11)
Second primary malignancy ^e	11 (9)
Macrophage activation syndrome	4 (3)

• 5 deaths due to TEAEs were reported

- 4 considered unrelated to liso-cel by investigators (respiratory failure, sepsis, *Escherichia coli* infection, and invasive aspergillosis)
- 1 considered related to liso-cel by investigators (macrophage activation syndrome)

a CRS was graded based on the Lee 2014 criteria; bNEs were defined as investigator-identified neurological AEs related to liso-cel; cDefined as grade \geq 3 laboratory abnormalities of neutropenia, anemia, and/or thrombocytopenia at Day 30 after liso-cel infusion; and long-term for the infections and infestations (System Organ Class) by AE high-level group term; AEs from the 90-day treatment-emergent period, posttreatment-emergent period, and long-term follow-up were included.

Bologna, November 13-14 2023 Royal Hotel Carlton

Siddiqi T, et al. ASCO annual mtg 2023

Liso-cel cellular kinetics and persistence at DL2

Patients with liso-cel

Liso-cel cellular kinetic parameters by qPCR

	Cellular kinetic set at DL2 (n = 89)
Median (IQR) C _{max,}	79,338.0
copies/µg	(29,895.0—184,172.0)
Madian (IOP) t dava	14.0
Median (IGR) (max, days	(10.0-14.0)
Median (IQR) AUC _(0-28d) ,	693,864.1
day*copies/µg	(221,422.7-1,765,580.9)

Persistence of liso-cel in blood by qPCR at DL2^a

Time from liso-cel infusion, months

- Liso-cel exhibited rapid expansion with a median t_{max} of 14 days after liso-cel
- Persistence of the liso-cel transgene was detected up to 36 months after liso-cel infusion in at least 1 of 4 evaluable patients

^aData are number of patients with liso-cel persistence/number of patients with an available sample at the specific time point. Persistence was defined as a transgene count \geq lower limit of detection (5 copies/reaction). Concentration values after the initiation of retreatment of liso-cel (including lymphodepletion) or after another anticancer treatment were excluded. AUC_(0-28d), area under the curve from 0 to 28 days after infusion; C_{max}, maximum expansion; t_{max}, time to maximum expansion.

Siddiqi T, et al. ASCO annual mtg 2023

Patient Responses at 10-month median followup – liso-cel + ibrutinib cohort

- All responders (n = 18/19) achieved a response by Day 30 after liso-cel
- Among 18 patients with ≥6 months of follow-up, 89% (n = 16/18) maintained or improved response from Day 30
- Of 17 patients who achieved uMRD in blood:
 - All achieved this response by Day 30
 - Only 1 later progressed due to Richter transformation (RT)

^aEvaluated according to iwCLL 2018 criteria. ^bAssessed in blood by flow cytometry and/or in bone marrow by NGS. ND, not done; Unk, unknown.

Best Objective Response by iwCLL and uMRD ($<10^{-4}$) – liso-cel + ibrutinib cohort

- No patients had PD during the first month after liso-cel
- One patient at DL1 had SD for 6 months but later progressed

^aEvaluated according to iwCLL 2018 criteria; ^bAt the time of this data cut, 1 patient had only 11 days of follow-up after liso-cel infusion and was not yet evaluable for response; ^cAssessed in blood by flow cytometry and/or in bone marrow by NGS. CRi, CR with incomplete blood count recovery; NGS, next-generation sequencing.

4th POSTGRADUATE CLL Conference

PFS and Duration of Response at 17-mo median followup – liso-cel + ibrutinib cohort

Conclusions

- TRANSCEND CLL 004 trial met its primary endpoint, with a CR/CRi rate of 18% in patients with R/R CLL/SLL after BTKi progression/venetoclax failure, which compares favorably with historical CR/CRi rates of 0%— 5%¹⁻⁶
- Liso-cel achieved high uMRD rates in both blood (63%) and marrow (59%)
- Efficacy outcomes were similar in the full study population (R/R CLL/SLL after prior BTKi), demonstrating a clinical benefit of liso-cel in this broader population
- Functional CAR T cells were successfully manufactured and demonstrated expansion and persistence in most patients
 - Higher liso-cel expansion was observed in responders and patients with uMRD
- The safety profile was manageable, with low rates of grade ≥ 3 CRS and NEs
- Overall, these results support liso-cel as a potential new treatment option for R/R CLL/SLL

^{1.} Patel K, et al. J Hematol Oncol 2021;14:69; 2. Sedlarikova L, et al. Front Oncol 2020;10:894; 3. Lew TE, et al. Blood Adv 2021;5:4054–4058; 4. Jones J, et al. Blood 2016;128:637; 5. Mato AR, et al. Clin Cancer Res 2020;26:3589–3596; 6. VENCLEXTA® (venetoclax) [package insert]. North Chicago, IL: AbbVie Inc.; June 2022; 7. Mato AR, et al. Clin Lymphoma Myeloma Leuk 2023;23:57–67.

Thank you for your attention!

tsiddiqi@coh.org

Cityof Hope

